Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
WASP-107 b seems to be a poster child of the long-suspected high-eccentricity migration scenario. It is on a 5.7 day, polar orbit. The planet is Jupiter-like in radius but Neptune-like in mass with exceptionally low density. WASP-107 c is on a 1100 day,e= 0.28 orbit with at least Saturn mass. Planet b may still have a residual eccentricity of 0.06 ± 0.04: the ongoing tidal dissipation leads to the observed internally heated atmosphere and hydrodynamic atmospheric erosion. We present a population synthesis study coupling octupole Lidov–Kozai oscillations with various short-range forces, while simultaneously accounting for the radius inflation and tidal disruption of the planet. We find that a high-eccentricity migration scenario can successfully explain nearly all observed system properties. Our simulations further suggest that the initial location of WASP-107 b at the onset of migration is likely within the snowline (<0.5 au). More distant initial orbits usually lead to tidal disruption or orbit crossing. WASP-107 b most likely lost no more than 20% of its mass during the high-eccentricity migration, i.e., it did not form as a Jupiter-mass object. More vigorous tidally induced mass loss leads to disruption of the planet during migration. We predict that the current-day mutual inclination between the planets b and c is substantial: at least 25°–55°, which may be tested with future Gaia astrometric observations. Knowing the current-day mutual inclination may further constrain the initial orbit of planet b. We suggest that the proposed high-eccentricity migration scenario of WASP-107 may be applicable to HAT-P-11, GJ-3470, HAT-P-18, and GJ-436, which have similar orbital architectures.more » « less
-
There may exist stellar-mass binary black holes (BBH) which merge while orbiting nearby a supermassive black hole (SMBH). In such a triple system, the SMBH will modulate the gravitational waveform of the BBH through orbital Doppler shift and de Sitter precession of the angular momentum. Future space-based gravitational wave (GW) observatories focused on the milli- and decihertz band will be uniquely poised to observe these waveform modulations, as the GW frequency from stellar-mass BBHs varies slowly in this band while modulation effects accumulate. In this work, we apply the Fisher information matrix formalism to estimate how well space-borne GW detectors can measure properties of BBH+SMBH hierarchical triples using the GW from orbiting BBH. We extend previous work by considering the more realistic case of an eccentric orbit around the SMBH, and notably include the effects of orbital pericenter precession. We find that for detector concepts such as LISA, B-DECIGO, and TianGO, we can extract the SMBH mass and semimajor axis of the orbit with a fractional uncertainty below the 0.1% level over a wide range of triple system parameters. Furthermore, we find that the effects of pericenter precession and orbital eccentricity significantly improve our ability to measure this system. We also find that while LISA could measure these systems, the decihertz detector concepts B-DECIGO and TianGO would enable better sensitivity to the triple’s parameters.more » « less
-
Abstract We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driveng-modes, extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters. Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and calculate the net mode dissipation for stars that range in mass from 0.5M⊙≤M⋆≤ 2.0M⊙and in age from the early main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal dissipation by orders of magnitude compared to linear dissipation processes. For the stars withM⋆≲ 1.0M⊙of nearly any age, we find that the orbital decay time is ≲100 Myr for orbital periodsPorb≲ 1 day. ForM⋆≳ 1.2M⊙, the orbital decay time only becomes short on the subgiant branch, where it can be ≲10 Myr forPorb≲ 2 days and result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and examine the prospects for detecting their orbital decay with transit timing measurements.more » « less
An official website of the United States government
